Anaximander was a Greek philosopher of Miletus, born 611-546 BC., and hence a younger contemporary of Thales and Pherecydes. He lived at the court of Polycrates of Samos.

The history of written Greek philosophy starts with Anaximander of Miletus in Asia Minor, a fellow-citizen of Thales. He was the first who dared to write a treatise in prose, which has been called traditionally On Nature. This book has been lost, although it probably was available in the library of the Lyceum at the times of Aristotle and his successor Theophrastus.

It is said that Apollodorus, in the second century BCE, stumbled upon a copy of it, perhaps in the famous library of Alexandria. Recently, evidence has appeared that it was part of the collection of the library of Taormina in Sicily, where a fragment of a catalogue has been found, on whichAnaximander's name can be read. Only one fragment of the book has come down to us, quoted by Simplicius (after Theophrastus), in the sixth century AD. It is perhaps the most famous and most discussed phrase in the history of philosophy.

We also know very little of Anaximander's life. He is said to have led a mission that founded a colony called Apollonia on the coast of the Black Sea. He also probably introduced the gnomon (a perpendicular sun-dial) into Greece and erected one in Sparta. So he seems to have been a much-traveled man, which is not astonishing, as the Milesians were known to be audacious sailors. It is also reported that he displayed solemn manners and wore pompous garments.

Most of the information on Anaximander comes from Aristotle and his pupil Theophrastus, whose book on the history of philosophy was used, excerpted, and quoted by many other authors, the so-called doxographers, before it was lost. Sometimes, in these texts words or expressions appear that can with some certainty be ascribed to Anaximander himself.

Anaximander was the author of the first surviving lines of Western philosophy. He speculated and argued about 'the Boundless' as the origin of all that is. He also worked on the fields of what we now call geography and biology. Moreover, Anaximander was the first speculative astronomer. He originated the world-picture of the open universe, which replaced the closed universe of the celestial vault.

He wrote a prose work in the Ionic dialect of which on fragment survives. Anaximander thought it unnecessary to fix upon air, water, or fire as the original and primary form of body.

He preferred to represent it simply as a boundless something from which all things arise and to which they all return again. He was struck by a fact which dominated all subsequent physical theory among the Greeks, namely, that the world presents us with a series of opposites, of which the most primary are hot and cold, wet and dry.

If we look at things from this point of view, it is more natural to speak of the opposites as being 'separated out' from a mass which is as yet undifferentiated than it is to make any one of the opposites the primary substance. Anaximander argued that Thales made the wet too important at the expense of the dry.

Some such thought, at any rate, appears to underlie the few words of the solitary fragment of his writing that has been preserved. He said that things 'give satisfaction and reparation to one another for their injustice, as is appointed according to the ordering of time.' This conception of justice and injustice recurs more than once in Ionic natural philosophy, and always in the same connection. It refers to the encroachment of one opposite or 'element' upon another.

The formation of the world is due to the 'separating out' of the opposites. Anaximander's view of the earth is a curious mixture of scientific intuition and primitive theory. On the one hand, the earth does not rest on anything, but swings free in space. The reason he gave was that there is nothing to make it fall in one direction rather than in another.

He inferred this because his system was incompatible with the assumption of an absolute up and down. On the other hand, though, he gives the earth a shape intermediate between the disc of Thales and the sphere of the Pythagoreans. He regarded it as a short cylinder 'like the drum of a pillar'. With regard to living beings, Anaximander held that all life came from the sea, and that the present forms of animals were the result of adaptation to a fresh environment. It is possible that some of this biological theories were grotesque in detail, but it is certain that his method was thoroughly scientific.

He was much impressed by the observation of certain sharks or dogfish, and evidently regarded them as an intermediary between fishes and land animals. His proof that man must have been descended from an animal of another species has a curiously modern ring. The young of the human species require a prolonged period of nursing.

According to Aristotle and Theophrastus, the first Greek philosophers were looking for the 'origin' or 'principle' (the Greek word 'arche' has both meanings) of all things. Anaximander is said to have identified it with 'the Boundless' or 'the Unlimited' (Greek: 'apeiron', i.e. 'that which has no boundaries'). Already in ancient times, it is complained that Anaximander did not explain what he meant by 'the Boundless'. More recently, authors have disputed whether the Boundless should be interpreted as spatially or temporarily without limits, or perhaps as that which has no qualifications, or as that which is inexhaustible.

Some scholars have even defended the meaning 'that which is not experienced', by relating the Greek word 'apeiron' not to 'peras' ('boundary', 'limit'), but to 'perao' ('to experience', 'to apperceive'). The suggestion, however, is almost irresistible that Greek philosophy, by making the Boundless into the principle of all things, has started on a high level of abstraction. On the other hand, some have pointed out that this use of 'apeiron' is atypical for Greek thought, which was occupied with limit, symmetry and harmony. The Pythagoreans placed the boundless (the 'apeiron') on the list of negative things, and for Aristotle, too, perfection became aligned with limit (Greek: 'peras'), and thus 'apeiron' with imperfection. Therefore, some authors suspect eastern (Iranian) influence on Anaximander's ideas.

It seems that Anaximander not only put forward the thesis that the Boundless is the principle, but also tried to argue for it. We might say that he was the first who made use of philosophical arguments. Anaximander's arguments have come down to us in the disguise of Aristotelian jargon. Therefore, any reconstruction of the arguments used by the Milesian must remain conjectural. Verbatim reconstruction is of course impossible. Nevertheless, the data, provided they are handled with care, allow us to catch glimpses of what the arguments of Anaximander must have looked like. The important thing is, however, that he did not just utter apodictic statements, but also tried to give arguments. This is what makes him the first philosopher.

Aristotle reports a curious argument, which probably goes back to Anaximander, in which it is argued that the Boundless has no origin, because it is itself the origin. We would say that it looks more like a string of associations and word-plays than like a formal argument. It runs as follows: "Everything has an origin or is an origin. The Boundless has no origin. For then it would have a limit. Moreover, it is both unborn and immortal, being a kind of origin. For that which has become has also, necessarily, an end, and there is a termination to every process of destruction" (Physics 203b6-10, DK 12A15). The Greeks were familiar with the idea of the immortal Homeric gods. Anaximander added two distinctive features to the concept of divinity: his Boundless is an impersonal something (or 'nature', the Greek word is 'phusis'), and it is not only immortal but also unborn. However, perhaps not Anaximander, but Thales should be credited with this new idea. Diogenes Lartius ascribes to Thales the aphorism: "What is the divine? That which has no origin and no end" (DK 11A1 (36)). Similar arguments, within different contexts, are used by Melissus (DK 30B2[9]) and Plato (Phaedrus 245d1-6).

The Boundless seems to have played a role in Anaximander's account of the origin of the cosmos. Its eternal movement is said to have caused the origin of the heavens. Elsewhere, it is said that "all the heavens and the worlds within them" have sprung from "some boundless nature". A part of this process is described in rather poetic language, full of images, which seems to be idiosyncratic for Anaximander: "a germ, pregnant with hot and cold, was separated [or: separated itself] off from the eternal, whereupon out of this germ a sphere of fire grew around the vapor that surrounds the earth, like a bark round a tree" (DK 12A10). Subsequently, the sphere of fire is said to have fallen apart into several rings, and this event was the origin of sun, moon, and stars. There are authors who have, quite anachronistically, seen here a kind of foreshadowing of the Kant-Laplace theory of the origin of the solar system. Some sources even mention innumerable worlds (in time and/or in space), which looks like a plausible consequence of the Boundless as principle. But this is presumably a later theory, incorrectly read back into Anaximander.

Astronomy

At first sight, the reports on Anaximander's astronomy look rather bizarre and obscure. Some authors even think that they are so confused that we should give up trying to offer a satisfying and coherent interpretation. The only way of understanding Anaximander's astronomical ideas, however, is to take them seriously and treat them as such, that is, as astronomical ideas. It will appear that many of the features of his universe that look strange at first sight make perfect sense on closer inspection.

The astronomy of neighboring peoples, such as the Babylonians and the Egyptians, consists mainly of observations of the rising and disappearance of celestial bodies and of their paths across the celestial vault. These observations were made with the naked eye and with the help of some simple instruments as the gnomon. The Babylonians, in particular, were rather advanced observers. Archeologists have found an abundance of cuneiform texts on astronomical observations. In contrast, there exists only one report of an observation made by Anaximander, which concerns the date on which the Pleiades set in the morning. This is no coincidence, for Anaximander's merits do not lie in the field of observational astronomy, unlike the Babylonians and the Egyptians, but in that of speculative astronomy.

We may discern three of his astronomical speculations: (1) that the celestial bodies make full circles and pass also beneath the earth, (2) that the earth floats free and unsupported in space, and (3) that the celestial bodies lie behind one another. Notwithstanding their rather primitive outlook, these three propositions, which make up the core of Anaximander's astronomy, meant a tremendous jump forward and constitute the origin of our Western concept of the universe.

The celestial bodies make full circles

The idea that the celestial bodies, in their daily course, make full circles and thus pass also beneath the earth - from Anaximander's viewpoint - is so self-evident to us that it is hard to understand how daring its introduction was. That the celestial bodies make full circles is not something he could have observed, but a conclusion he must have drawn. We would say that this is a conclusion that lies to hand. We can see - at the northern hemisphere, like Anaximander - the stars around the Polar star making full circles, and we can also observe that the more southerly stars sometimes disappear behind the horizon. We may argue that the stars of which we see only arcs in reality also describe full circles, just like those near the Polar star. As regards the sun and moon, we can observe that the arcs they describe are sometimes bigger and sometimes smaller, and we are able to predict exactly where they will rise the next day. Therefore, it seems not too bold a conjecture to say that these celestial bodies also describe full circles. Nevertheless, it was a daring conclusion, precisely because it necessarily entailed the concept of the earth hanging free and unsupported in space.

The Earth floats unsupported in space

Anaximander boldly asserts that the Earth floats free in the center of the universe, unsupported by water, pillars, or whatever. This idea means a complete revolution in our understanding of the universe. Obviously, the earth hanging free in space is not something Anaximander could have observed. Apparently, he drew this bold conclusion from his assumption that the celestial bodies make full circles. More than 2500 years later astronauts really saw the unsupported earth floating in space and thus provided the ultimate confirmation of Anaximander's conception. The shape of the earth, according to Anaximander, is cylindrical, like a column-drum, its diameter being three times its height. We live on top of it. Some scholars have wondered why Anaximander chose this strange shape. The strangeness disappears, however, when we realize that Anaximander thought that the earth was flat and circular, as suggested by the horizon. For one who thinks, as Anaximander did, that the earth floats unsupported in the center of the universe, the cylinder-shape lies at hand.

Why the earth does not fall

We may assume that Anaximander somehow had to defend his bold theory of the free-floating, unsupported earth against the obvious question of why the earth does not fall. Aristotle's version of Anaximander's argument runs like this: "But there are some who say that it (viz. the earth) stays where it is because of equality, such as among the ancients Anaximander. For that which is situated in the center and at equal distances from the extremes, has no inclination whatsoever to move up rather than down or sideways; and since it is impossible to move in opposite directions at the same time, it necessarily stays where it is." (De caelo 295b10ff., DK 12A26) Many authors have pointed to the fact that this is the first known example of an argument that is based on the principle of sufficient reason (the principle that for everything which occurs there is a reason or explanation for why it occurs, and why this way rather than that).

Anaximander's argument returns in a famous text in the Phaedo (108E4 ff.), where Plato, for the first time in history, tries to express the sphericity of the earth. Even more interesting is that the same argument, within a different context, returns with the great protagonist of the principle of sufficient reason, Leibniz. In his second letter to Clarke, he uses an example, which he ascribes to Archimedes but which reminds us strongly of Anaximander: "And therefore Archimedes (...) in his book De aequilibrio, was obliged to make use of a particular case of the great Principle of a sufficient reason. He takes it for granted that if there be a balance in which everything is alike on both sides, and if equal weights are hung on the two ends of that balance, the whole will stay at rest. This is because there is no reason why one side should weigh down, rather than the other".

One may doubt, however, whether the argument is not fallacious. Aristotle already thought the argument to be deceiving. He ridicules it by saying that according to the same kind of argument a hair, which was subject to an even pulling power from opposing sides, would not break, and that a man, being just as hungry as thirsty, placed in between food and drink, must necessarily remain where he is and starve. To him it was the wrong argument for the right proposition. Absolute propositions concerning the non-existence of things are always in danger of becoming falsified on closer investigation. They contain a kind of subjective aspect: 'as far as I know'. Several authors, however, have said that Anaximander's argument is clear and ingenious. Already at first sight this qualification sounds strange, for the argument evidently must be wrong, as the earth is not in the center of the universe, although it certainly is not supported by anything but gravity. Nevertheless, we have to wait until Newton for a better answer to the question why the earth does not fall.

The celestial bodies lie behind one anotherWhen Anaximander looked at the heaven, he imagined, for the first time in history, space. Anaximander's vision implied depth in the universe, that is, the idea that the celestial bodies lie behind one another. Although it sounds simple, this is a remarkable idea, because it cannot be based on direct observation. We do not see depth in the universe. The more natural and primitive idea is that of the celestial vault, a kind of dome or tent, onto which the celestial bodies are attached, all of them at the same distance, like in a planetarium. One meets this kind of conception in Homer, when he speaks of the brazen or iron heaven, which is apparently conceived of as something solid, being supported by Atlas, or by pillars.

Anaximander placed the celestial bodies in the wrong order. He thought that the stars were nearest to the earth, then followed the moon, and the sun farthest away. Some authors have wondered why Anaximander made the stars the nearest celestial bodies, for he should have noticed the occurrence of star-occultations by the moon. This is a typical anachronism, which shows that it not easy to look at the phenomena with Anaximander's eyes.

Nowadays, we know that the stars are behind the moon, and thus we speak of star-occultation when we see a star disappear behind the moon. But Anaximander had no reason at all, from his point of view, to speak of a star-occultation when he saw a star disappear when the moon was at the same place. So it is a petitio principii to say that for him occultations of stars were easy to observe. Perhaps he observed stars disappearing and appearing again, but he did not observe - could not see it as - the occultation of the star, for that interpretation did not fit his paradigm. The easiest way to understand his way of looking at it - if he observed the phenomenon at all - is that he must have thought that the brighter light of the moon outshines the much smaller light of the star for a while. Anaximander's order of the celestial bodies is clearly that of increasing brightness. Unfortunately, the sources do not give further information of his considerations at this point.

The celestial bodies as wheels

A peculiar feature of Anaximander's astronomy is that the celestial bodies are said to be like chariot wheels (the Greek words for this image are presumably his own). The rims of these wheels are of opaque vapor, they are hollow, and filled with fire. This fire shines through at openings in the wheels, and this is what we see as the sun, the moon, or the stars. Sometimes, the opening of the sun wheel closes: then we observe an eclipse. The opening of the moon wheel regularly closes and opens again, which accounts for the phases of the moon. This image of the celestial bodies as huge wheels seems strange at first sight, but there is a good reason for it.

There is no doxographic evidence of it, but it is quite certain that the question of why the celestial bodies do not fall upon the earth must have been as serious a problem to Anaximander as the question of why the earth does not fall. The explanation of the celestial bodies as wheels, then, provides an answer to both questions. The celestial bodies have no reason whatsoever to move otherwise than in circles around the earth, as each point on them is always as far from the earth as any other. It is because of reasons like this that for ages to come, when Anaximander's concept of the universe had been replaced by a spherical one, the celestial bodies were thought of as somehow attached to crystalline or ethereal sphere-shells, and not as free-floating bodies.

Many authors, following Diels, make the image of the celestial wheels more difficult than is necessary. They say that the light of a celestial bodies shines through the openings of its wheel 'as through the nozzle of a bellows'. This is an incorrect translation of an expression that probably goes back to Anaximander himself. The image of a bellows, somehow connected to a celestial wheel, tends to complicate rather than elucidate the meaning of the text. If we were to understand that every celestial body had such a bellows, the result would be hundreds of nozzles (or pipes), extending from the celestial wheels towards the earth. Anaximander's intention, however, can be better understood not as an image, but as a comparison of the light of the celestial bodies with that of lightning. Lightning, according to Anaximander, is a momentary flash of light against a dark cloud. The light of a celestial body is like a permanent beam of lightning fire that originates from the opaque cloudy substance of the celestial wheel.

A representation of Anaximander's universe

Although it is not attested in the doxography, we may assume that Anaximander himself drew a map of the universe, like that in figure 1. The numbers, 9, 10, 18, etc., can easily be understood as instructions for making such a map. Although Diogenes Lartius reports that he made a 'sphere', the drawing or construction of a three-dimensional model must be considered to have been beyond Anaximander's abilities. On the other hand, it is quite easy to explain the movements of the celestial bodies with the help of a plan view, by making broad gestures, describing circles in the air, and indicating direction, speed, and inclination with your hands, as is said of a quarrel between Anaxagoras and Oenopides.

Almost nothing of Anaximander's opinions about the stars has been handed down to us. Probably the best way to imagine them is as a conglomerate of several wheels, each of which has one or more holes, through which the inner fire shines, which we see as stars. The most likely sum-total of these star wheels is a sphere. The only movement of these star wheels is a rotation around the earth from east to west, always at the same speed, and always at the same place relative to one another in the heaven.

The sun wheel shows the same rotation from east to west as the stars, but there are two differences. The first is that the speed of the rotation of the sun wheel is not the same as that of the stars. We can see this phenomenon by observing how the sun lags behind by approximately one degree per day. The second difference is that the sun wheel as a whole changes its position in the heaven.

In summer it moves towards the north along the axis of the heaven and we see a large part of it above the horizon, whereas in winter we only observe a small part of the sun wheel, as it moves towards the south. This movement of the sun wheel accounts for the seasons. The same holds mutatis mutandis for the moon. Today, we use to describe this movement of the sun (and mutatis mutandis of the moon and the planets) as a retrograde movement, from west to east, which is a counter-movement to the daily rotation from east to west.

In terms of Anaximander's ancient astronomy it is more appropriate and less anachronistic to describe it as a slower movement of the sun wheel from east to west. The result is that we see different stars in different seasons, until the sun, at the end of a year, reaches its old position between the stars.Due to the inclination of the axis of the heaven, the celestial bodies do not circle around the earth in the same plane as the earth's - flat - surface, but are tilted.

This inclination amounts to about 38.5 degrees when measured at Delphi, the world's navel. The earth being flat, the inclination must be the same all over its surface. This tilting of the heaven's axis must have been one of the biggest riddles of the universe. Why is it tilted at all? Who or what is responsible for this phenomenon? And why is it tilted just the way it is? Unfortunately, the doxography on Anaximander has nothing to tell us about this problem. Later, other Presocratics like Empedocles, Diogenes of Apollonia, and Anaxagoras discuss the tilting of the heavens.

Although there exists a report that says the contrary, it is not likely that Anaximander was acquainted with the obliquity of the ecliptic, which is the yearly path of the sun along the stars. The ecliptic is a concept which belongs to the doctrine of a spherical earth within a spherical universe. A three-dimensional representation of Anaximander's universe is given in Figures 2 and 3.

Map of the world

Anaximander is said to have made the first map of the world. Although this map has been lost, we can imagine what it must have looked like, because Herodotus, who has seen such old maps, describes them. Anaximander's map must have been circular, like the top of his drum-shaped earth. The river Ocean surrounded it. The Mediterranean Sea was in the middle of the map, which was divided into two halves by a line that ran through Delphi, the world's navel. The northern half was called 'Europe', the southern half 'Asia'. The habitable world (Greek: 'oikoumen') consisted of two relatively small strips of land to the north and south of the Mediterranean Sea (containing Spain, Italy, Greece, and Asia Minor on the one side, and Egypt and Libya on the other side), together with the lands to the east of the Mediterranean Sea: Palestine, Assyria, Persia, and Arabia. The lands to the north of this small 'habitable world' were the cold countries where mythical people lived. The lands to the south of it were the hot countries of the black burnt people.

Biology

The doxography tells us that according to Anaximander life originated from the moisture that covered the earth before it was dried up by the sun. The first animals were a kind of fish, with a thorny skin (the Greek word is the same that was used for the metaphor 'the bark of a tree' in Anaximander's cosmology). Originally, men were generated from fishes and were fed in the manner of a viviparous shark. The reason for this is said to be that the human child needs long protection in order to survive. Some authors have, rather anachronistically, seen in these scattered statements a proto-evolutionist theory.

Conclusion

It is difficult trying to unify the information on Anaximander into one all-compassing and consistent whole. His work will always remain truncated, like the mutilated and decapitated statue that has been found at the market-place of Miletus and that bears his name. Nevertheless, by what we know of him, we may say that he was one of the greatest minds that ever lived. By speculating and arguing about the 'Boundless' he was the first metaphysician. By drawing a map of the world he was the first geographer. But above all, by boldly speculating about the universe he broke with the ancient image of the celestial vault and became the discoverer of the Western world-picture.





GREEK PHILOSOPHERS INDEX


ANCIENT GREECE INDEX


ANCIENT CIVILIZATIONS INDEX



ALPHABETICAL INDEX


CRYSTALINKS HOME PAGE


PSYCHIC READING WITH ELLIE


BOOK: THE ALCHEMY OF TIME


DONATION TO CRYSTALINKS


ADVERTISE ON CRYSTALINKS